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Abstract. We show in the present paper that many open and challenging problems in control theory
belong the the class of concave minimization programs. More precisely, these problems can be recast
as the minimization of a concave objective function over convex LMI (Linear Matrix Inequality)
constraints. As concave programming is the best studied class of problems in global optimization,
several concave programs such as simplicial and conical partitioning algorithms can be used for
the resolution. Moreover, these global techniques can be combined \atialaFrank and Wolfe
feasible direction algorithm and improved by the use of specialized stopping criteria, hence reducing
the overall computational overhead. In this respect, the proposed hybrid optimization scheme can be
considered as a new line of attack for solving hard control problems.

Computational experiments indicate the viability of our algorithms, and that in the worst case
they require the solution of a few LMI programs. Power and efficiency of the algorithms are demon-
strated for a realistic inverted-pendulum control problem.

Overall, this dedication reflects the key role that concavity and LMIs play in difficult control
problems.

Key words: Fixed-order controlH, synthesis, Robust control, Parametric uncertainty, Linear mat-
rix inequalities, Global concave minimization, Frank and Wolfe algorithms

1. Introduction

A number of challenging problems in robust control theory fall within the class
of rank minimization problems subject to LMI (convex) constraints. An important
example is provided by the reduced-ordéy, control problem. It has been shown
in [10, 21, 31] that there exists /ath order controller solving théZ,, control
problem of a plant with:-th order if and only if one can find a pair of symmetric
matrices ¥, Y) with dimensiorm x n such that for soméf,, performance leve)

the following holds.

(X, Y, y)L, 1)
X I
Rank[l Y} <n-++k, (2)
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whereJ is a convex set defined by LMI constraints. More precisely, the constraint
(1) has an expansion in the form

N
AX) = Ao+ Y xA; <0,
i=1
where thex;’s are the decision variables linearly related to the original variables
(X,Y,y) and theA;’s are symmetric matrices. The inequali#y(x) < 0 must
be understood in the semidefinite sense, thatié;) has only strictly negative
eigenvalues.

The hardness of problem (1)—(2) stems from the rank condition (2) which is
essentially nonconvex. Note that (2) is automatically satisfied with theicase
of arbitrary-order controllers and such the problem dramatically simplifies to (1),
an LMI constraint that can be solved using highly reliable and efficient techniques
in Semi-Definite Programming (SDP). Among such techniques are polynomial-
time interior- point techniques extensively discussed in the monograph [28]. As
it plays a central role in robust control theory, many researchers in the control
community have devoted their efforts to developing heuristics and techniques for
determining solutions to the class of nonconvex problems (1)—(2). See [12, 13,
15, 19] to cite a few and [14, 35, 36, 39] for methods that are related to global
optimization techniques.

One of the main purposes of this paper is to show that not only problem (1)—(2)
but also many other important and challenging problems in robust control theory
can be recast as concave minimization problems. That is, prolems involving a
concave functional subject to convex constraints consisting of LMIs. A sample
list of such problems includes robust control and robust multi-objective problems
based on any kind of scalings or multipliers, robust fixed- or reduced-order control
problems, multi-objective Linear Parameter-Varying (LPV) control, reduction of
LFT representations, and more generally any combination of such problems. These
problems are generally difficult to deal with but exhibit some nice geometric con-
cave structure that makes them more attractive and painless than general nonlinear
optimization problems. Remarkably, though concave programming is the best stud-
ied class in global optimization since the pioneering paper [37], it seems to have
escaped the control research attention, so that very little effort has been dedicated to
the global approach to such problems. Another distinguished characteristic of the
concave problems under study is that whenever feasible, optimality occurs only at
zeros of the concave functional. In this respect, such problems can be reinterpreted
as zero finding concave programs which significantly reduces the difficulty of the
search. Thus, new stopping criteria which locate such zeros as fast as possible are
of great interest and will be discussed briefly. Since local optimization algorithms
are computationally much cheaper than global ones, it is also of interest to develop
an adequate local optimization technique to determine a good enough initial value.
The concave structure of the problem implies that the Frank and Wolfe algorithm
should be very useful in that respect. As we shall see, it is guaranteed to generate
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strictly decreasing sequences for the objective functional and that the sequence of
points is either infinite or reach a local optimal solution. Such local algorithms and
stopping criteria are then combined with recently available concave programming
methods [17, 18, 24, 38] to certify global optimality of the solutions or invalidate
feasibility. The overall hybrid algorithm consists of a suitably built FW algorithm

at the initializing stage associated with several alternative concave programming
techniques in the central body.

The FW algorithm is much less costly but in return, is prone to non- global
optimality. On the other hand, concave minimization techniques provide global
optimal solutions but generally require intensive computations. Therefore, an im-
portant target of this paper is to maintain a reasonable computational cost by taking
advantage of local and global techniques. Hence, the global concave programming
techniques are used either to refine a local solution issued from the FW algorithm
until global optimality is achieved or to provide a certificate of global optimality.
We have paid special attention to the simplicial and conical Branch and Bound
concave minimization methods [38] which respectively divide the feasible set into
simplices and cones of decreasing sizes. The main thrust of these techniques is that
they rely heavily on concavity and convexity geometric concepts which make them
particularly appropriate for our problems. Each step of the proposed techniques
exploits both the convexity of the constraint set and the concavity of the functional
and also the fact that only zero optimal values are of interest. This allows large por-
tions of the feasible set to be eliminated at each iteration. The most computationally
demanding operation in each step comes down to solving one LMI program, hence
the practicality of the methods. On the other hand, the stopping criteria mentioned
above reveal very useful to further reduce the computational cost.

Intensive computational experiments indicate that the local solutions found by
the FW algorithm are very close to optimality and are either certified global or
quickly improved to optimality after a few iterations of the simplicial and conical
techniques. The reader is referred to [4] and its extended version freely available
upon request for other details and a catalog of examples.

The paper has a tutorial nature since it relies on existing results in the area
of robust control with LMIs. See the bibliography section provided at the end.
Our intention has been to point the optimization community attention to some
other classes of problems and structures, which difficulties are encountered and
what kind of techniques are likely to be used. For clarity and understanding of
the concepts, we have repeated some of the proofs. The reader is referred to addi-
tional material when lengthy derivations are required. The remainder of the paper
is organized as follows. Instrumental tools are introduced in Section 2. Control
problems and their formulation as concave minimization programs are discussed
in Section 3 to 5, from the simple stabilization problem up to the more sophistic-
ated robust control problems. Section 6 briefly focuses on specific local and global
techniques as well as stopping criteria for arriving at a complete resolution. Finally,
a realistic control problem illustrates the formulations and techniques in Section 7.
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The following definitions and notations are used throughout the pafeis the
transpose of the matrid, and M* denotes its complex- conjugate transpose. The
notation TV stands for the trace a¥ while ., is any matrix, whose columns
form a basis of the nullspace &f. For Hermitian or symmetric matrice3f >
N means thatM — N is positive definite and/ > N means thatM — N is
positive semi- definite. The notation{ga, ... , p.} stands for the convex hull of
the set{p1, ..., pr}. The notation ve(tP) is used to denote the set of vertices of
a polyhedronP. Simplices and cones are defined in the usual way. In symmetric
block matrices or long matrix expressions, we s an ellipsis for terms that are
induced by symmetry, e.g.,

S M S M
*[* Q:|KEKT|:MT Q]K.

We shall also us& f(x) to denote the (row vector) gradient of the functign
Finally, in algorithm descriptions the notatioki® is used to designate theth
iterate of the variablé. The notations inf anda S are used for the relative interior
and the boundary of the s8t

2. Instrumental tools

As mentioned above, a number of challenging problems in robust control theory
can be formulated as concave minimization programs. These reformulations are
strongly based on the following lemmas which help simplifying the theoretical
characterizations. The first one is the projection Lemma and allows the elimination
of a matrix variable occurring linearly in some LMI expressions [10].

LEMMA 2.1 (Projection Lemma [10]) Given a symmetric matri¢ € R™*" and
two matricesP, Q of column dimension m, the following problem

U4+ PTXTQ+0"xXP <0 ©))
is feasible with respect to matriX of compatible dimensions if and only if
NEWNp <0, NjWANy <O, (4)

where N, and N, denote arbitrary bases of the nullspacesroaind Q, respect-
ively.

REMARK 2.2. The LMI (3) admits a convex set of solutions. One can extract a
particular solution using SDP techniques or more simply by direct matrix algebraic
techniques. A detailed discussion is given in [6,10].

The following lemma is crucial for reducing the nonconvexity degree in the LMI
approach to control problems.
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LEMMA 2.3. Given real symmetric matrice¥ and Y in R"*", there existU in
RE*k symmetric andv such that

-1
|
and

W > 0, (6)

if and only if O is the optimal value of the following problem of minimizing a
concave function over a convex set

minTr(X — Y 1 —vvT)s.r. (7)
X IV

VeR> | T Y O0|>0 ®
vl 0 1

Proof. From the matrix completion result (see e.g. [18, 31]), (5) and (6) are
equivalent

X I
M ©)

RankX — Y1) <«. (10)
But (10) holds true if and only if
X-vy1t=vvl VvVeR™,

for some matrixV of dimensiorm x k. On the other hand, by a Schur complement
argument, the convex LMI (8) giveX — Y~ — VVT) > 0 which also implies
Tr(X — Yt —vvT) > 0. Then, we have TXx — Y~ — VVT) = 0 if and only

if X — Y~ = VvV, Note that the objective (7) is concavexh> 0,Y > 0 and

V. O

REMARK 2.4. Note that fok = 0, i.e.U disappears in (5) then problem (7), (8)

is simplified to the minimization of the concave objectiveg Xr— Y1) over the
convex constraint (9). On the other hand, foe= =, the rank constraint (10) is
automatically satisfied and thus (5), (6) are equivalent to the convex constraint (9).

The next lemma provides efficient means for assessing quadratic performance of
a linear system and can be regarded as a generalization of a Lyapunov’s stability
theorem.
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LEMMA 2.5 [32]. The linear system
X =Ax+ Bw,x(0)=0
(11)
z2=Cx+ Dw

is internally stable (i.e. the matrid is asymptotically stable) and the following
guadratic performance condition

rz]"Tu wlfz)
/0 [w(t):| [WT V:| |:w(t)] dt <0, VT >0, VYw(@) (12)

with given matriced¥ and symmetrié¢/ > 0 andV, holds if and only if there is a
solution > 0 of the LMI

AT P + P A PB+CTW cT
BTP+wle v+wlo+2™w DT | <0 (13)
C D —U?t

Proof. Recall that the asymptotic stability 6 means that the solution traject-
ories ofx = Ax tend to zero as the timetends to infinity, for arbitrary initial
conditions. The celebrated Lyapunov theorem [26], which is a fundamental tool
in stability theory states that is asymptotically stable if and only if there is a
solution# > 0 of the LMI

ATP + PA <O (14)

Now, the implication (13}(12) is easy to check. Indee@®, > 0 in (13) particu-
larly satisfies (14) which proves the asymptotic stabilitytof
Using a Schur complement, (13) is also equivalent to

ATP + P A PB+CTwW 4 cT
BTP+WIe V+WID+DTW DT

INED "(MTATP + PA PB+CTW
w(r) BTP+WIC VEWID+DTW

+ [f)TT] ule 1)]} [;((?)} <0

:|U[G D] <0

d V' Tu wllze)
o Ly [T [ 8 W][20] <o .
where V(t) = xT()Px() and (d/d)V(t) = xT () (ATP + PAx()
+2xT ()P Bw(t).

Noticing thatV(T) > 0,VT > 0 and that with zero initial conditiong (0) = 0,
and integrating (15) on the time intenj&l, T'] yields (12).

The implication (12)= (13) is more delicate and follows from indefinite linear-
quadratic control theory [34]. O
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Probably, the most well-known variant of Lemma 2.5 is the so called Bounded
Real Lemma characterizing tlig-gain condition

T
/ [J/_lzT(t)z(t) — wa(t)w(t)]dt <0, VT >0, (16)
0

for system (11) (see e.g. [1]), which means thatihg-norm of the transfer func-
tion T'(s) := C(sI — A)"18 + D from w to z is bounded by . As shown in [10,
21, 31], this Lemma plays a crucial role in the LMI approach to kFhg control
problem. Obviously, (16) is a particular case of (12) with= y 11, W = 0, and
V=—ylI

3. Stabilization problems

We begin our analysis of control problems that can be formulated as concave min-
imization problems by the static gain stabilization problem. This problem has a
fairly simple formulation but retains the properties and difficulties of many prob-
lems examined throughout the paper.

3.1. STATIC STABILIZATION: OUTPUT FEEDBACK VS STATE FEEDBACK
Consider a linear system which obeys the differential equation
X=Ax+Bu,y=Cx, AeR"™ an

wherex (¢) is the state vector(¢) is the control signal angl(r) is the measurement
vector.

The static gain stabilization problem consists in the determination of a control
signal

u=Ky, (18)

whereK is a static gain matrix such that the closed-loop system (17) and (18) is
stable. That is, the state of the closed-loop system

x=(A+ BKC)x, x(0)=xg (19)

converges asymptotically to zero as time increases. This control objective admits an
alternative matrix inequality characterization via Lyapunov Theorem [26]. As men-
tioned in the previous section, an equivalent formulation is therefore the existence
of a symmetric matrixX such that the matrix inequalities

(A+BKC)"X+ X(A+ BKC) <0 (20)
X>0 (21)

hold.



350 PIERRE APKARIAN AND HOANG DUONG TUAN

Condition (21) particularly implies th& is nonsingular and therefotgyr y =
X~1Ngr. Then rewrite (20) in the form

(ATX +XA)+ CTKTBT"X + XBKC <0, (22)

and apply the projection Lemma 2.1 to (22). The problem is then easily reformu-
lated as the matrix inequalities of (21) together with

NE(ATX + XA)Ne <0, (23)
NEXHATX + XA)X T Npr <0
& N (YAT + AY)Ngr <0 (24)

with ¥ = XL Thus, by Remark 2.4, this problem is equivalent to that 0 be the
optimal value of the following concave program

min Tr(X — Y1) s.t. (23), (24), (9) (25)

Note that in the case of the state-feedback control (i.e- I), one just have to
solve LMI (24) which is a convex SDP problem. This clarifies the hardness of
output-feedback control problems in regard to their state-feedback versions.

REMARK 3.1 Itis worth noticing that when a solution to (25) has been found, a
solutionK to the static gain stabilization problem is easily derived by solving (22),
which for a givenX becomes an LMI with respect &. Here again, SDP solvers
or direct algebraic techniques are useful for that purpose.

3.2. DYNAMIC CONTROL: FIXED-ORDER VS FULL-ORDER

For reasons that are related to controllability and observability properties of the
system triple(A, B, C), it may be that a static control is not sufficient for solving

the stabilization problem just discussed. In such a case, we are led to using a dy-
namic controllerk (s) with prescribed ordet (number of states), hence depending

on the Laplace variable instead of a mere static gak. In other terms, we have

to find a dynamic controllek (s) in the form

ix = A B
K (s) XK KXk + Dky (26)
u = CK)CK + DKy

with Ax € R¥** and transfer functiok (s) = Cx(sI — Ax) 1Bk + Dg.
With x, = [xT x%]”, it is immediate to check that the closed-loop system
(17) and (26) is nothing else than the following system

-;Ca = Aaxa + Bauav Ya = Caxa’ (27)
U, = Kyya, (28)
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with the notations

T4 0 [oB] . [01L  [Ax Bx
A“—[o OJ’B“—[Ik 0]’Ca—[c o]’K“—[cK Dk]’ (29)

Our problem now becomes that of finding a static stabilizing control (28) with
matrix gainK, for system (27). We note that in (29) all matricas, B,, C, are
completely defined fromd, B, C. The system (27) is called the augmented system
for system (17).

Now, applying the result of Lemma 2.1 and in view of the trivial relations

N N
s[5 4]
we obtain the following characterization which is analogous to the conditions (23)—
(24)

T
[‘Aﬂ (AT X, + X, A,) [‘Aﬂ <0 (30)
[NST} (Y AT + A,Y,) [NST} <0 (31)
Y,=X,'>0. (32)

The structure of the matrices in (29) implies that we can simplify (30)- -(31).
Indeed, with the partition

Xo = |:A)7(T Z]Ya=[1‘; AI;[],X,YER"X",E,FER]‘X]‘, (33)
we have
ATX, + X, Ay = [ATX(;FXA 8] Y, AT 4 ALY, = [AY BYAT (())
(34)
and (30)—(31) becomes
NEAT + XA Ne <0, NL(AY + YA )Nz <0 (35)

Finally, applying Lemma 2.3 to (32)—(33), we deduce the concave minimization
formulation (with variables{, Y andV) of the fixed- order control problem as the
concave programming problem

min{Tr(X — Y~ — vvT) : subject to LMIs (35) and (8) (36)

By similar arguments, various performance indexes can be handled such as
H»-norm performance, passivity constraints, and general quadratic constraints and
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their combinations. The reader is referred to [32] for a thorough discussion on these
constraints.

Again, in the case of full-order control (i.ke.= n), by Remark 2.4, the dynamic
stabilization problem reduces to the feasibility of LMIs (35) and (9), an easy convex
problem. When solutionX, Y andV to problem (36) have been found, the explicit
construction of the controlleK (s) can be performed using a standard procedure
[10].

4. Fixed-order H,, synthesis problems

Stability is certainly a vital requirement in most control applications but it is gen-
erally not sufficient and additional practical specifications have to be taken into
account. Thed,, synthesis framework has received great attention in the last dec-
ade, mainly because it allows the formulation of a variety of practical specifications
such as signal tracking, disturbance rejection, noise attenuation and loop-shaping
constraints. A general formulation of th&,, synthesis control problem is as fol-
lows. We consider a linear time-invariant plant described in “standard form” by the
state-space equations:

X = Ax + Biw + Bou, A e R
P(s){z= Ci1x + D11w + D1ou (37)
y = sz + D21w,

where
e u € R™2 s the vector of control input(s)

e w € R™ is a vector of exogenous inputs (reference signals, disturbance sig-
nals, sensor noise, etc.)

e y € R”2 s the vector of measurements

e 7 € RP1is a vector of output signals related to the performance of the control
system.

Let T'(s) denote the closed-loop transfer functions franto z for some dy-
namic output-feedback control law = K (s)y defined by (26). Our goal is to
compute a&-th order output-feedback controller (26) which meets the following
design requirements

e Internal stability: for w = 0 all states of the closed-loop system (37) and (26)
tend to zero as time tends to infinity.
e performancethe L,-gain condition (16) is satisfied.
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As for pure stabilization problems, it is possible to derive a matrix inequality char-
acterization of this problem via a simple extension of Lyapunov theory [6]. The
closed-loop system (37) and (26) can be rewritten in compact form as

'c = Ac c Bc
T(s) Xel eXel + Beew (38)
7= Cexeq + Degw

where
AL B A+ B,DgCy  ByCk | Bi+ BoDgDoy
ct [ 2el | — BxC> Ax Bx Dy . (39)
CCE Dcl

C1+ D12DxCy D15Ck | D11+ D12Dg Doy

Then, applying Lemma 2.5 to (38) withi = y 11,V = —yI andW = 0, the
above stability and performance requirements are met iff there exists a symmetric
matrix X, with

ACTZXCZ + XCEACZ XCEBCZ CCTZ
BL X —yl D! | <0, X, >0. (40)
Cc( Dc( —)/I

Itis routine calculation to see that the first inequality in (40) can be rewritten in the
form dictated by Lemma 2.1. Indeed, from expression (39) we can see that

Ac( |Bc€ — |- Aa + BaKaCa | Bl,a + BaKaDZLa (41)
Cet |Det | Cra + D12.4KoCo | D11+ D12.4Ku D214
where
__|Ax Bg 1A 0 | B .
Ka = [CK DK] s Aa = [0 0ki| Bl,a = [0 ’ Cl,a = [Cl 0]
(42)

10 B2 10 I . 10
Ba = |:Ik 0:| s Cu = |:C2 0:| s DlZ,a = [O DlZ] s D21,a = |:021] .

Then the first inequality in (40) can easily be rewritten as
W+ Q'K Py, + P{ ,K,Q <0, (43)
with the notations
Py, :=[BlX. 0 D, ], 0 :=[Cs D214 0],
AZ;XCZ + XCEAa XCZBl,a Cfa

o= Bl X —yl D]
Cia Dy —yl
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Note that
X, 00
Px,=P| 0 I 0| withP =[B! 0 D[],
0 01

from which we infer

X—l

cl 0
Neg,=| O 1 0|Np.
0 O

~N O O

Hence, using Lemma 2.1, the existencekgfin (43) is equivalent to the existence
of X., > 0 such that

AL{XCE +Xc(Aa XL‘KBl,Ll CZI].:a

NGWNg <0& N B X —yl DI | W~y <O (44)
C1a Dy -yl

X AT + AX P B, X MCT,
Npy WNp, & Np B{, -yl DI |WNp <O  (45)
) Cro X Dy —yl

Similarly to Section 3.2, we use the following partition &y, andXL,‘,Zl

X = |:]\)7(T ]g]i| ’Xc_ﬁl = [ Y Mi| (46)

Wy, 0
0 0] . W1
Np = 0 7 with [WJZN[BZT YL
| W2 0
(v, 0
00 1%
No = Vo 0 with |:V;:| =MNMc, Dal-
| 0 1

This allows us to simplify (44)—(45) into

cy

XA+ATX* XB;
D7, [N[Cz D1 0} -0 (47)

* BIX -yl
Cy D1 |-yI

0 1




CONCAVE PROGRAMMING IN CONTROL THEORY 355

YAT + AY YC] | By
N 0
«| vy  —yI|Dn [ [BzTO Dl 1] <0 (48)
BlT DlTl |—VI

Meanwhile, by virtue of Lemma 2.3, the existenceXoéndY satisfying (46), (47)
and (48) is equivalent to the zero-seeking concave program

min Tr(X — Y1 —vvT): LMIs (47) — (48), and (8) (49)

Again, by Remark 2.4, in the full-order cage= n, the problem reduces to check-
ing the feasibility of (9), (47)—(48), which is a standard (convex) SDP problem.

5. Robust control problems

A further requirement in control applications is that stability and performance are
maintained in the presence of structured parametric uncertainties. This comes from
the fact that plant’s models are never perfectly known and one must account for un-
certainties that invariably affect the state-space realization data. This is the problem
investigated hereafter.

We are concerned with the robust control problem of an uncertain plant sub-
ject to LFT (Linear Fractional Transformation) uncertainty. In other words, the
uncertain plant is described as

X A BA B]_ Bz X

N Can Dan Dp1 Dpz | | wa (50)
z C1 Dipn D11 Dipp w

y Ca Don Doy O u

wa = A(1)za,

where A(¢) is an uncertain time-varying matrix-valued parameter and is usually
assumed to have a block-diagonal structure in the form

A(t) =diag(..., 801, ..., A;@),...) e RN (51)
and normalized such that
ADOTAMN LI, t>0. (52)

Blocks denoteds;/ and A; are generally referred to as repeated-scalar and full
blocks according to thg analysis and synthesis literature [9, 8].

Clearly, the plant with inputay andu and outputg andy has state-space data
entries which are fractional functions of the time- varying paramatgy. This
representation is fairly general and can encompass most practical situations. Here
again, the meaning of, w, z, y remains the same as that in Section 4.

For the uncertain plant (50)—(52) the robust control problem consists in seeking
a linear time-invariant controller (26) such that &df parameter trajectorieA(r)
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determined by (52), the closed- loop system (50)—(52) and (26) is internally stable
and theL,-gain conditions (16) is fulfilled.

As in Section 4, it is now well-known that such problems can be handled via a
suitable application of Lemma 2.5. For a brief justification of this generalization,
we need the following notation

. w
Xeg = Acfxcf + Bc( |: wA]

in| _ WA
|:Zi|—cc€xc£+Dc£|:wi|,

where the state-space data, B.., C., andD., determine the closed-loop system
(50) and (26) with the\ loopwa = A(f)za Open.

We notice that checking condition (16) directly is generally intractable since all
admissibleA must be examined. Scalings or multipliers are therefore introduced
to derive a relaxation of this problem, thus providing a sufficient condition. This
relaxation requires the definitions of scaling sets compatible with the parameter
structure given in (51). Denoting this structuresthe following symmetric and
skew-symmetric scaling sets can be introduced

SaA :=1{S:8" =8, SA = AS, VA with structureA}
TA :={T:T" = —T, TA = AT, YA with structureA}.

(53)

It is easily verified that with§ > 0, the uncertain matriX\ satisfies the quadratic
constraints

Al [TT =S||A
An equivalent form for (54) is also

z s 1 z
A Al > = TA <

with structureA. (55)

T
[1] [ S T ] [1} >0, VAstATA I, withstructureA. (54)

With these definitions, a sufficient condition for (16) to hold for all possible
is the existence af > 0 andT skew-symmetric such that

T T
/O [V—lzT(t)Z(t)—wa(t)w(t)+ [;AA((?)] [TST _TS] [;AA((?)” dt <0,

or alternatively,
w®1'Ts o |7 o0

/T 2(1) 0 y7|{0 0 10)

o | wal) TT 0 0 wa(t)

—S
w(t) 0O O ‘0 —yl w(t)

Za ()

dt < 0. (56)



CONCAVE PROGRAMMING IN CONTROL THEORY

Applying Lemma 2.5 to (53) with

S 0 TT 0
U=[o y_ll]w=[0 0},\/:

o

357

The quadratic inequality (56) is equivalent to the existenc¥ of> 0, S > 0 and

a skew-symmetri@ such that

i ALT»EXCZ + XCZACE

*

T T O S 0 T O
Bcexcf"'_[() 0 Co — 0 1 + 00 Dy + * * )
st 0
! o P _[ 0 VI}_
(57)

Exploiting this last condition which enforces both stability and performance for
all admissibleA(¢), the next theorem gives a simplified characterization where the
nonconvexity of the problem is clearly identified. Again the tools introduced in
Section 2 are essential in the derivation. The reader is referred to references [2, 3,
16, 20, 29, 30, 33] for more details and additional results.

THEOREM 5.1 Consider the LFT plant governed I§$0) and (52) with A as-
suming a block-diagonal structure as {61). Let Nx and Ay denote any bases
of the nullspaces ofCz, Daa, D21, 0] and [B], D%,, D7, 0], respectively. Then,
there exists am-th order controller such that conditio(67) holds withX., > 0
and S > 0 and someL,-gain performancey if and only if there exist pairs of
symmetric matricesX, Y), (S, X) and a pair of skew-symmetric matric€g, I'")
such that the structural constraints

S, X eSpandT,I" € Tp (58)
hold and the matrix inequalities
ATX + XA XBa + CATT XB; cis cf
BiX +TCx —S+TDxsn+ D\T" TDx1 DL,\S Di,
* BI'X pt,r’ -yl DY, DI, | Nx <0,
SCa SDan SDny =S 0
C1 Dia Dip 0 -yl
(59)
AY +YAT YC} + BaT'T Ycl' B, B
CAY +TBY —% +TDJ, + Daal'" I'DI, Dar% Da:
* CY DT —yl DipX D13 | Ny <0,
T BI DT, pf, - 0
Bf Dy, pj, 0 -—yI

(60)
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X I SO0
[1 Y]>O’ [0 2}>0 (61)
subject to the algebraic constraints
S+T) == +1D), (62)

or equivalently,

-1
S T > Irr
5 -5 <63>
are feasible.
Proof. See the Appendix A. O

Note that due to the algebraic constraints (62), the problem is nonconvex and
has been even shown to have non-polynomial (NP) complexity. See [5] and ref-
erences therein. Simpler instances of this problem as those considered in [27] are
NP-hard. This feature is in stark contrast with the associated Linear Parameter-
Varying control problem for which the LMI constraints (59)—(61) are the same but
the nonlinear conditions (62) or alternatively (63) fully disappears. Also LMI (60)
alone withY > 0 is a characterization for tHell- information control problem, a
problem of independent interest, which is therefore convex.

The concave minimization formulation of (59)—(62) is following

LEMMA 5.2 Introduce the concave LMI-constrained minimization program

PB1l: minTr(Zy — Z3Z;'ZY) : (59)—(61) (64)
7 Zz  S+T I
zr Z, I 4T
S+T) I 1 o |=0 (65)

I +D) 0 I

Then, any feasible point b1 which further satisfies

Tr(Z1 — Z3Z,*723) =0, (66)
is optimal and is a solution to the problem described in Theorem 5.1 and con-
versely.
Proof. This is a particular case of a result in [4]. a

ProblemPB.1 provides a characterization for full-order controll¢ks= n). If
we further require that the controller be of reduced ofder n, then the problem
should be formulated as

min Tr(Zy — Z3Z,* 2Ly + Tr(x — vy~ = vvT) : (59) — (61), (65), (8
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again as LMI-constrained zero-seeking concave problem.

Similar formulations can also be derived for the reduction of LFT represent-
ations and more generally to rank-constrained LMI problems and BMI (Bilinear
Matrix Inequality) problems.

6. Solving methods

In this section we shall briefly describe some resolution algorithms for the concave
programsPbl. Other concave programs can be treated similarly. We seétifat
is to check whether there exists

Z* € x ={(Z1, Z», Z3) : A(X, Y, S, T2, T) s.t. (59) — (61), (65), (67)

satisfying f (Z*) = 0 wheref(Z) := Tr(Z, — Z3ZZ‘12§) is concave. Such Z*
when it exists will be called aeroof f. It is important to note that sincg satisfies
f(Z) = 0,VZ € x, any zero off is also a global optimal solution of

min f(Z) : Z € x, (68)

and consequently, our problem is much more computationally attractive than con-
ventional concave programs in which minimal values of the cost function are un-
known. In the methods presented hereafter, we can stop the search as soon as either
such a zero is found in which case global optimality is ensured, or the minimum
cost value is strictly positive in which case our problem has no solution. We refer
the interested reader to [4] and its extended version for more details on the al-
gorithms described in this section and extensive computational experiments. The
extended version is available upon request to authors. Our intention here is the con-
ception of an overall hybrid scheme, where the zero- seekingieficcomplished

by the combination of local optimization, global optimization and stopping tests.

6.1. A LOCAL FRANK AND WOLFE ALGORITHM AND STOPPING CRITERIA

For problem (68), the Frank and Wolfe (FW) algorithm at iterati@man be detailed
as follows:
Find a steepest descent directid@’*! by solving the LMI program

MiNnTr(G1Z1 + G2Z> + G3Z53) : (59)—(61), (65) (69)
where
af af k—l kT k k—l
Gy =—=1, Gy =——=1275 75 7375 ,
1 YA 2 97, 2 43 4349
of 1T
Gy := — = -2z "z},
3 373 2 43

If £(Z¥1) < £(Z%) move to the next iteration. Otherwise stop the algorithm.
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Since f is concave, the algorithm generatgsctly decreasingsequences that
can only terminate to a point satisfying the minimum principle local optimality
conditions and the conventional line search at every iteration is bypassed. That is,
a full step of one can be performed.

In order to further reduce the computational cost of the proposed techniques, we
introduce some stopping procedures since in practical applications a perfect zero
optimal value is never required which leaves some freedom to reduce the number
of steps.

Given the current point of the algorithm determined by the variab¥&s Y*),

(Sk, T%), (=*, %), Z%, Z& and Z% our goal is to verify whether this point or a
closely related point is a solution to the LMIs (59)—(61) subject to the algebraic
constraint (62). In our new notation, our test takes the form

LMIs (59)—(61) (70)

(S*+TH L= (ZF+T1h. (72)

Note that in the course of the algorithm, the current point is not generally optimal so
that the constraint (71) does not hold. It is, however, possible to terminate the pro-
gram without reaching optimality. Our stopping criteria are based on the following
perturbations technigues. We assume that a current feasible point of LMIs (59)—
(61) and (65) is given. There exists a controller for which the conditions in Theorem
5.1 hold whenever one of the following perturbation techniques is successful.

e ComputeW = (S¥ 4+ 7%)~ and updatez* andI'* using the substitutions
i,{_=W+WT f,{_=W—WT
= =

Then, stop if new point passes the test (70).

e If previous test fails, then comput® = (2* + I'*)~! and updates* and 7*
using the substitutions

(72)

~ W+ wT ~ w—wT
Sk ————— Th = ————. 73
> 5 (73)
Then, stop if new point passes the test (70).
e oOr alternatively solve irP the perturbation problem
SE+ T+ Py +TE+ Py =1 (74)

or equivalently the generalized Riccati equation

SK+THP + PEF4+TH + P2 (SF+THE +TH —T=0.
(75)
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Then, stop if one of the solutions obtained with the substitutions

Sk:Wl_WlT Tkzwl_WlT
2 2
ik=W2+W2T szwz—WZT
2 2

(76)

where
Wi=8+15+ P, Wo,=3%f4+TF4+ P,
passes the test (70).

Note that without loss of generalit, in (75) can be selected as a general matrix
with structure in conformity with the uncertainty structueThe generalized Ric-
cati equation (75) has a combinatoric of solutions that are easily computed using
Hamiltonian techniques [7, 23, 25]. One can then easily extract a real smallest
norm perturbation by combinatorial exploration. This task however will require
extra computational efforts. It is thus recommended to use the first perturbation
techniques alone for large size uncertainties.

6.2. GLOBAL SEARCH WITH THE SIMPLICIAL ALGORITHM

In view of the recent developments in global optimization, it seems that a BB
method is the most suitable for our global search. The following analysis is useful
to improve efficiency of the simplicial and conical BB methods.
Branching: The functionf is not only concave inZ1, Z,, Z3) but is also linear
in Z, with (Z,, Z3) held fixed, i.e. onlyZ,, Z3) are the ‘complicating’ vari-
ables, responsible for the nonconvexity/hardness of the problem. The global
search thus is concentrated on the reduced-dimensional Zpeiceariables
(Z2, Z3). Accordingly, the feasible set can be interpreted as the projection of
the convex set defined by the LMIs (59)—(61) and (65) on the sgadehis
space is partitioned into finitely many simplices. At each iteration, a parti-
tion simplexM is selected and subdivided further into several subsimplices
according to the normal rule [38].
Bounding and terminatingGiven a partition simplexX/ with verticesu?, 2,
., u ™ (N is the dimension of), the concavity off and its linearity in
Z, are further exploited in the search of a zergfobver (Z,, Z3) € M. This
is carried out through computing a lower boysid\/) satisfying

BM) < v(M):=inf{f(Z): Ze€ x,(Zs Z3) € M}. (77)
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which is computed by

N+1 N+1 N+1
MINTHZ)+) A fOu'): Y A =11x >0, (zl, > ml‘) € X,
i=1

i=1 i=1
. N v
i_—l.,2,..|.,1v+1 f(Z1,u") <0,

Of course, we can use the optimal solutidga(M) and w(M) = Zf\’;{l
Ai(M)u' of (78) not only for updating the best current value (upper bound)
but also for the stopping test developed above to reduce the time of global
search. Clearly, the partition se¥ with §(M) > 0 cannot contain any zero

of f and therefore are discarded from further consideration. On the other
hand, the partition set with smalle§td) < 0 can be considered the most
promising one. To concentrate further investigation on this set, we subdivide
it into more refined subsets. With a given toleraace 0, the stop criterion

of the BB algorithm is

min (M) > e. (79)

6.3. CONICAL ALGORITHM

Close scrutiny of the objective function properties 4y — Z3ZZ‘12§) reveals the
following.

() If(Z4, Z,, Z3) is the solution ofPb1 with the zero optimal value thefaZ,,
tZ,,tZ3) with ¢t > 1 is also a solution satisfying the same conditions. Thus,
without loss of generality, we can set(¥;) = L, with L a constant large
enough.

(i) Z, > I which means that we can use the change of varigble> Z, + ¢l
with Z, > 0 instead ofZ, > 0.

As a consequence, probldpibl can be reduced to minimizing the objective func-
tion

f(Z2,Z3) = L —Tr(Z3(Za 4+ e1)~*2Z1) (80)

and LMIs (59)—(65) are changed accordingly using the substit#ijor> Z,+¢1.
The functionyf in (80) is concave in the con@/'? x €™ whereC''? is the cone of
nonnegative definite matrices with the same structurg.sand €3 is the space
of symmetric matrices having the same structure&aslt is sufficient to takez
as a large enough finite family of canonical cones approximatiffgx €™ with
some tolerance. Perhaps, the most essential property of a concave fufigion

that its level set€y = {Z = (Z», Z3) € Z : f(Z) > 0} are convex and therefore
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an alternative formulation of our problem is to fildtl € x\intCq or else prove
that x C intCop, where bothy, Cy are convex sets. All these facts are taken into
account in the global search with the conical algorithm based upon the so-called
concavity cut or Tuy cut [37]. We omit the description here, the reader is referred
[4] for details. By concentrating the search on the boundary of the feasible set, the
conical algorithm better exploits the fact that the global minimum is attained at an
extreme point and is therefore more efficient than the simplicial algorithm in the
case of problenPbl

However, the simplicial algorithm is convenient for exploiting the partial linear-
ity of the objective. For instance, in the case when all skew-symmetric maffices
andTI vanish, the objective fdPblcan be reduced to the form

Tr(S) = Tr(=™), (81)

which means that it is concave B and linear inS. The simplicial algorithm
can then be applied directly, with branching operations in the redkespgace as
previously. Thus in this case, the simplicial algorithm might be preferred.

7. Robust control of an inverted pendulum

This section provides an illustration of the local and global techniques introduced
above. As mentioned in the introduction, the overall algorithm can be detailed as
follows. The FW algorithm is computationally cheaper than simplicial and con-
ical global techniques, and hence is used first to find a good suboptimal value
y. Then, the simplicial/conical algorithm are employed to further reducer

to certify global optimality. The illustration consists of the robust control problem
of an arm-driven inverted pendulum (ADIP) which is depicted in Figure 1. this
is a two-link system comprising an actuated arm (first link) and a non-actuated
pendulum (second link). The main control objective is to maintain the pendulum
in the vertical position using the rotation of the arm. Moreover, this stabilization
must be accomplished on a wide range of with respect to the angular position of
the arm. A detailed description of the plant as well as the corresponding physical
experiment is given in [22].

By selecting as state vector:= [z z r, ¢1]7, wherer, is the horizontal
position of the arm tip «(, is the vertical position)p; and ¢, are the angular
positions of the arm and the pendulum, respectively, ang r, + glz<p2, The
following simplified LFT state-space representation is obtained [22].

X = Ax + Bawa + Bu, zp = Cpax, wa = AZa,
where the parameter structure is given as

r, 00
A:=]|0¢ O
0 0 ¢
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Figure 1. Inverted pendulum.

Wiy
wry >
R
I I
r |1 ! Tz Witz
—0—= 3 K | ADIP wp8 [
'

| 1
"~ controller 'T' T

Figure 2. Synthesis structure for the inverted pendulum.

Therefore, the inverted pendulum admits LPV dynamics and can be controlled
using either LPV or robust control techniques, as those considered in Section 5.
Given an operating range for the inverted pendulum, the parameters are normalized
such thatA = diag(d1, 21>) with |§;| < 1,i =1, 2.

The synthesis structure used to achieve the design requirements is shown in
Figure 2. It simply translates performance trackiagx;) and high-frequency gain
attenuation(w,r,). The numerical data of the synthesis interconnection are given
in Appendix B.

Table 1 displays the performance of each algorithm in terms of number of itera-
tions and cputime. The computations were performed on a PC with CPU Pentium Il
330 Mhz and all LMI-related computations were performed using-¥eControl
Toolbox[11]. Remember that the simplicial and conical algorithms are used only
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Table 1. Performance of each algorithm

FWA SA CA
y #iter. cputime # iter. cputime #iter. cputime
0.2 3 65.74sec. - - - -

0.1910 10 148.03sec. - - - -
0.1905 10 152.09sec. - - - -

0.1904 2 56.08 sec. - - - -

0.1903 f f 1 12.3 sec. 1 18.73 sec.
0.1838 - - 2 84.80sec. 1 18.95 sec.
0.18375 - - 12(inf) 793.01sec. 1 18.840 sec.
0.18370 - - 1(inf) 13.03sec. 1(inf) 16.04 sec.

FWA: Frank and Wolf algorithm; SA: simplicial algorithm; CA: conical algorithm;
f: the test fails; inf: no zero optimal value (infeas.)

after a the FW algorithm has failegr (= 0.1903 in this case). The symbol ‘f’
indicates a failure of the FW algorithm to achieve the corresponding valye of
first column, whereas the symbol ‘inf’ is used to specify infeasibility of

From Table 1, we see that the performance found by the FW algorithm is within
5.5% of the global optimal value of. It is also worth noticing that with the same
y, there are many solutions obtained by the global algorithms. For instance, for
y = 0.1838, the scaling solutions with the simplicial and conical algorithms are
given as

1.2261x 10°° 0 0 0 O 0
S = 0 05110 —-0.0231|,7=|0 0 -0.0014/,
0 —0.0231 0.0042 0 0.0014 0
and
1.2261x 10> 0 0 0 0 0
S = 0 0.1719 0.0010 ,T=10 0 00073,
0 0.0010 4.2145< 10°° 0 —0.0073 0

respectively. The optimal scalings with= 0.18375 and the conical algorithm are

1.2264x 10° 0 0 0 0 0
0 0.1748 0.0010 , T =10 0 00074| .
0 0.0010 3.3449% 10°° 0 -0.0074 O

The optimal value ofy achieved with both the simplicial and conical algorithms
are very close to that obtained using LPV synthesis where the parameter is not
uncertain but known in real time/(= 0.1830). This indicates that one will hardly

find a better linear time-invariant controller for the specified control objectives.
Similar realistic or randomized numerical experiments were conducted for other
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control problems, and indicate that the proposed techniques are very useful for
solving such hard problems.

8. Concluding remarks

In this paper, we show that many important problems in robust control theory
can be formulated as the minimization of a concave functional over a convex
set determined by LMI constraints. The catalog given in this paper is by far non-
exhaustive and many other control problems can be formulated in the same manner.
In this respect, concavity appears to play a central role in a broad class of problems.
This is the departure point which motivates the development of a comprehensive
technique which provides a global solution of inherently difficult control problems.
What is most promising is that NP-complexity never occurs in practical applica-
tions, so that the proposed algorithms are indeed useful and practical. These good
results are obtained by exploiting a combination of a well-known method in clas-
sical differential optimization and more recent techniques in combinatorial concave
minimization.

Appendix A

We note first that it is possible to simplify the proof by using the substitutions

By:=[Bs By].C,= [CA} ,

C1
- (82)
Dan Dar Dxz
D11 := , Dyo = , D1 :=|Dopn D
11 [DM D11 12 |:D12i| 21 [ 2A 21]
and
so] .. [ro
s [597=[19. -

where we assumed = 1 for further simplification.
As in Section 4, we see that the performance condition (57) is equivalent to

U+ P){d K.,Q+Q"KI'Px, <0, (84)
where

Al Xeo + XAy XeBro+C{, 77  Cf,

W=|Bl X +TCry —8+TDu+DuT’ DI
Cia D11 -5

Px, = [BIXa DL, 77 D). 0 =[Cy Dava O]

with A,, B14, C14, ... defined in (42) and wher8;, C1, D11, D12, Dy are re-
placed With£l, C1, D11, D12, Do1.
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Thus by virtue of the Projection Lemma 2.1, (84) is equivalent to
Wi, ¥Wp, <0, Wiw Wy <0, (85)

whereWp, , W, are any bases of the nullspacesif, and Q, respectively.
A basis of the nullspace d?y_, is obtained as

X000
0 I 0|Wp,
0 01

whereW, is any basis of the nullspace 8f= B! D{, 7" Df, .
An equivalent condition for the first inequality in (85) is thug ®W, < 0,
with
X AT+ A X Bua+ X el g7 XMl
®=|Bl +TCL. X} —8+TDu+DLTT DI | (86)
’ Cl,aXc_gl e(Dl]_ —/3_1

From (42), itis easily inferred that bases of the null spacez arfid Q are obtained,
respectively, as

Wl 0 Vl 0
0 0 00

WP = 0 I ’ WQ = V2 ol (87)
W, =771 0 I

W1 Vi
where W, and v are bases of the nullspaces[@] D7,] and[Cz D],

respectively. With the help of these notations, and exploiting the fact that the second
row of Wy, is zero, the second projection in (85) withdefined from the partition
(46) simplifies to (59) up to the congruent transformation

100
0710
004

Similarly, with T defined from the partition (46), the first projection in (85) reduces
to
T

Vi O YAT + AY B+ YelsT YeIlfvi o
0 I B{+TCY —8+TDu+DLTT DY, || 0 I | <O
V, =TT C1Y D11 —871 | Vo =TT
Computing this expression leads to
viay +yATyvi+vliewrvi+vivelvo—v]s-1v, * -0
sfvi+ 2l v, + 7571, —(S+ 78157 :

(88)
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Finally, performing the changes of variable
T=B+T7"81), T=-B8+78 7)) 178
with

_ [zo0] - [ro
Z'=[o 1]’ F'=[o o]’

or equivalently
S+ = +0D),

the congruent transformation

X0

0 7
allows the identification of (88) with (60). To summarize, the problem is solvable if
and only if (59)—(60), (61) and (62) have a solution such fatin (84) is positive

definite. The latter condition is equivalent to the first LMI in (61) by Lemma 2.3.
Finally, the conditions in Theorem 5.1 are derived by reversing the substitutions in

(82) and (83). This completes the proof of the theorem. O
Appendix B
A| Br | B1 | By
Ca| Dan [Da1|Da2 |
C1| Dia | D11 | D12
| C2l Daa |D21| O
B 0 1 0 0 0 0 0 0 0 d 07
489844 0 —489844 0 0 0 —.35634 —0.15548 0 0| O
0 0 0 .184940 0|.0750596 0 0 0 Q 50.
0 0 0 —-500 O 0 0 0 0 0 O
0 0 -.50 0 0 0 0 0 050 O
0 0 0 1 0 0 0 0 0 q O
43633231 0 —.043633 0 0 0 0 .043633| 0 0 O
1 0 -1 0 0 0 0 0 0 0| O
0 0 0 0036988 0 .001501 0 0 0 g O
0 0 0 0 1 0 0 0 0 do
0 0 1 0 0 0 0 0 0 g O
1 0 -1 0 0 0 0 0 0 0 O
B 0 0 0 0 1 0 0 0 0 4d 0.
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